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In the last lecture we studied the controllability and observability of a system in deterministic
systems, and using these tools we studied system identification and model reduction. This lecture
we go back to the stochastic system with noise, and consider Linear–Quadratic–Gaussian (LQG)
control. We want to find the optimal control policy for a stochastic system where the observation
is also affected by Gaussian noise.

1 LQG Problem Formulation

The stochastic system of question is described by the following equations,

xt+1 = Axt +But + wt,

yt = Cxt + vt,

wt ∼ N (0,W ), vt ∼ N (0, V ).

(1)

The system is a standard linear stochastic system, xt is the system states at time t, ut is the system
input at time t, yt is the system observation at time t, lastly wt and vt are the system noise and
observation noise at time t, both noise follow a Gaussian distribution.

Previously we looked at when we only have noisy observations of the system and we try to find
the optimal estimation of the system states from the observations, the method is called Kalman
Filtering. We also looked at the task where we know the state of a stochastic system and we want
to find the optimal control input minimizing a given quadratic cost, this method is called LQR.
Here we want to combine the two together. Suppose we only have the noisy observations of the
stochastic system, and we want to find the optimal control based on the observation, such that the
expectation of the quadratic cost is minimized.

Similar to previous study on stochastic systems, since the noise in the system is not deterministic,
we aim to minimize the expectation of the quadratic cost. The objective is defined as follows,

J = minimize
u0,...,uN−1

E

[
N−1∑
t=0

(xT
t Qxt + uT

t Qut) + xT
NQfxN

∣∣∣∣∣ y0, . . . , yN−1

]
(2)

Note. The notation above isn’t quite correct accurate. What we mean is the the decision ut should
depend on y0, . . . , yt−1. So each decision depends on a different subset of the information.

1.1 Separation Principle

We want to prove the Separation Principle. In this case, Separation Principle means that the
optimal control can be generated by first use Kalman Filter to find optimal system estimation, then
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we use LQR to find the optimal output based on the optimal estimation, and the end result is
indeed the optimal control feedback output for the LQG task.

Another note is that although we only provide analysis of Separation Principle in the LQG setting,
Separation Principle can be applied to more general systems, even when the system is
not Linear, cost is not Quadratic, and noise is not Gaussian. However, the nice formulas we
will derive for the estimation and control gains only work when we make the LQG assumptions.

The separation principle is different from the notion that standard LQR has the same optimal policy
as stochastic LQR. This fact is known as certainty equivalence. Unlike the separation principle,
certainty equivalence requires the LQG assumptions. When we do not have linear dynamics, for
example, both LQR and stochastic LQR can be solved using dynamic programming, but they will
not necessarily have the same optimal policy.

2 Optimal Controller

2.1 Value Function Definition

First we define the information available at time t as it,

it := {y0, . . . , yt−1, u0, . . . , ut−1}. (3)

At time t we define the following value function.

Vt(it) := minimize
ut,...,uN−1

E

[
N−1∑
k=t

(xT
kQxk + uT

kQuk) + xT
NQfxN

∣∣∣∣∣ it, ut] (4)

To reduce the confusion between a random variable and its realization, we denote random variables
with capital letter and an instance of random variable with lower case letter.

2.2 Optimal Solution

Using the new notations, we can write the general version of the principle of optimality. See the
supplementary notes for a proof of this result.

Vt(it) = min
u

E
[
XT

t QXt + UT
t QUt + Vt+1(It+1)

∣∣∣ It = it, Ut = u
]
,

It+1 = {It, Yt, Ut}.
(5)

We know that at the terminal time step N , VN = E[XT
NQfXN | IN = iN ] = x̂T

NQf x̂N + tr(QΣN ).
Here we denote the conditional distribution of XN given iN as XN |iN ∼ N (x̂N ,ΣN ).

Next we want to prove that for all time t, Vt(it) can be written as Vt(it) = x̂T
t Ptx̂t + rt. We will

prove this by induction. We assume it is true at time t+ 1, then at time t, we have

Vt(it) = min
u

E
[
XT

t QXt + UT
t QUt + Vt+1(It+1)

∣∣∣ It = it, Ut = u
]

= min
u

{
x̂T
t Qx̂t + tr(QΣt) + uTQu+E

[
X̂T

t+1Pt+1X̂t+1

∣∣∣ It = it, Ut = u
]
+ rt+1

}
, (6)
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where, according to Kalman Filtering, we have

x̂t+1 = (A+ LtC)x̂t +Bu− Ltyt

= (A+ LtC)x̂t +Bu− Lt(Cxt + vt)

= Ax̂t +Bu− Lt(C(xt − x̂t) + vt)

∼ N (Ax̂t +Bu,Lt(CΣtC
T + V )LT

t ) (7)

Plugging (7) into (6), we have

Vt(it) = min
u

{
x̂T
t Qx̂t + tr(QΣt) + uTQu+E[X̂T

t+1Pt+1X̂t+1|It = it, Ut = u] + rt+1

}
= min

u

{
x̂T
t Qx̂t + uTQu+ (Ax̂t +Bu)TPt+1(Ax̂t +Bu)

+ tr(QΣt) + tr(Pt+1Lt(CΣtC
T + V )LT

t ) + rt+1

}
= min

u

{
x̂T
t Qx̂t + uTQu+ (Ax̂t +Bu)TPt+1(Ax̂t +Bu)

}
+ tr(QΣt) + tr(Pt+1Lt(CΣtC

T + V )LT
t ) + rt+1

The last three terms do not depend on u, and the first three terms are exactly the same as in
the LQR problem, hence the optimal u is the same as in LQR but we replace xt with x̂t. This
proves the separation principle.

Therefore, we compute Pt and Kt exactly as in LQR, and we can write:

Vt(it) = x̂T
t Ptx̂t + rt

ut = Ktx̂t
(8)

The optimal LQG controller is a dynamical system with an internal state x̂t that estimates the
internal state of the plant, xt. We can draw it as a block diagram:

ut ←−
x̂t+1 = (A+ LtC)x̂t +But − Ltyt

ut = Ktx̂t
←− yt (9)

We can write the entire system diagram as Fig. 1, the optimal controller is in the red block.

3 Optimal cost of LQG controller

To consider the cost of the system, we need to go back to the definition of value function

J = x̂T
0P0x̂0 + r0

= x̂T
0P0x̂0 +

N−1∑
t=0

(
tr(QΣt) + tr(Pt+1Lt(CΣtC

T + V )LT
t )
)
+ tr(QfΣN ) (10)

This cost expression does not appear to be symmetrical. For example, it involves Lt but not Kt. It
involves Q but not W . This is an illusion. It turns out we can manipulate this expression for the
cost and show that it is actually symmetrical.
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Figure 1: Optimal LQG controller.

Recall the following relationships.

Lt = AΣtC
T(CΣtC

T + V )−1

Σt+1 = AΣtA
T +W −AΣtC

T(CΣtC
T + V )−1CΣtA

T

= AΣtA
T +W − Lt(CΣtC

T + V )LT
t

If X0 ∼ N (0,Σx), we replace x̂T
0P0x̂0 by tr(P0Σx) and obtain Therefore (10) can be written as

J = tr(P0Σx) +
N−1∑
t=0

(
tr(QΣt) + tr(Pt+1(AΣtA

T +W − Σt+1))
)
+ tr(QfΣN )

= tr(P0Σx) +
N−1∑
t=0

(
tr(QΣt) + tr(Pt+1AΣtA

T) + tr(Pt+1W )− tr(Pt+1Σt+1)
)
+ tr(QfΣN )

This expression is now symmetric in P and Σ. We can also use the LQR Riccati equation to obtain
an expression involving W , Σt, B, and Kt analogous to (10).

4 Stability of closed-loop system

We use the notion of steady-state LQG controller to denote the system where we replace Pt,Kt,Σt, Lt

with their steady-state versions. The dynamics of the steady-state system are

xt+1 = Axt +But + wt

yt = Cxt + vt

x̂t+1 = (A+ LC)x̂t +But − Lyt

ut = Kx̂t

(11)

We can eliminate two internal signals yt, ut and get,

xt+1 = Axt +BKx̂t + wt

x̂t+1 = (A+ LC)x̂t +BKx̂t − LCxt + vt
(12)

Combining the two states as one vector, we get,
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[
xt+1

x̂t+1

]
=

[
A BK
−LC A+BK + LC

] [
xt
x̂t

]
+

[
I 0
0 −L

] [
wt

vt

]
(13)

To examine the stability of the system, we perform a change of coordinates.[
xt
et

]
=

[
I 0
I −I

]
︸ ︷︷ ︸

T

[
xt
x̂t

]
(14)

The system dynamics can be transformed using T to obtain[
xt+1

et+1

]
=

[
I 0
I −I

] [
A BK
−LC A+BK + LC

] [
I 0
I −I

]−1 [
xt
et

]
+

[
I 0
I −I

] [
I 0
0 −L

] [
wt

vt

]
=

[
A+BK −BK

0 A+ LC

] [
xt
et

]
+

[
I 0
I L

] [
wt

vt

] (15)

State transformations do not change the eigenvalues, so the eigenvalues of the closed-loop map are
precisely those of A+BK and A+ LC, which we know are stable by design since they come from
the LQR controller and Kalman filter, respectively.

In this section, we made no assumption that the L and K in (11) were chosen optimally. So as
long as K and L are chosen such that A + BK and ALC are stable, the controller will have an
observer-regulator structure as in Fig. 1 and the closed-loop map will be stable.
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